

INSTITUTION OF SAFETY ENGINEERS (INDIA इंस्टीट्यूशन ऑफ सेफ्टी इंजीनियर्स (इंडिया) WORK SAFER AND SAVE NATURE

www.iseindia.in info@iseindia.in

OCCUPATIONAL HEALTH HAZARDS 8 **ITS PREVENTION** IN **PROCESS INDUSTRY** By Dr. SWAPAN KUMAR HALDAR **Conducted by Institution of Safety Engineers** (India)

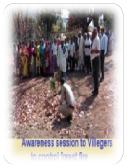
www.iseindia.in

Institution of Safety Engineers (India)

Welcome in Free Webinar Session on OCCUPATIONAL HEALTH HAZARDS & ITS PREVENTION IN PROCESS INDUSTRY on 28th November 2022, 4:00 PM to 5:30 PM

INSTITUTION OF SAFETY ENGINEERS (INDIA)

OCCUPATIONAL HEALTH HAZARDS & ITS PREVENTION IN PROCESS INDUSTRY


About us

Institution of Safety Engineers (India) is Non -Profitable organization set up in year 2012 under ZJEW Trust, Govt. Reg. No. 5240 and working with objective to prevent accident, protect environment & minimize losses during disaster. Institution of safety engineers (India) imparting safety, health, environment & quality related training to needy & provide similar services to industries, organization, institution to achieve zero harm.

MEMBERSHIP SERVICES

SAFETY HEALTH ENVIRONMENT RELATED TRAINING & SERVICES

JOURNAL PUBLICATION

OUR SPEAKER

www.iseindia.in info@iseindia.in

Mr. Dr. S. K. Haldar : MBBS, Former Dy. Director General, DGFASLI, Gol Former Dy. Principal Medical Officer, Hindustan Cables Ltd (PSU), West Bengal. Expert & Senior Member of Institution of Safety Engineers (India)

Miss Tamanna Afroz : B.Tech, PDIS, SMISE Co-ordinator, Institution of Safety Engineers (India)

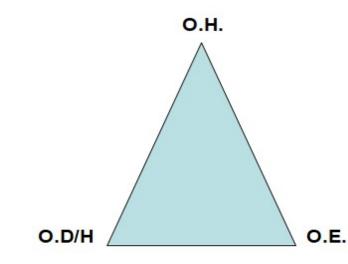
B. RAMAZZINI (1633-1714)

PROCESS INDUSTRY & ITS QUALITY MANAGEMENT

Industries that extract, transport and process raw materials to manufacture semifinished or high quality end products by means of physical, mechanical and/or chemical processes are classified as process industries.

TOTAL QUALITY MANAGEMENT OF PROCESS INDUSTRY:

- Process Quality
- Product Quality &
- Human Quality



Coke Oven Plant

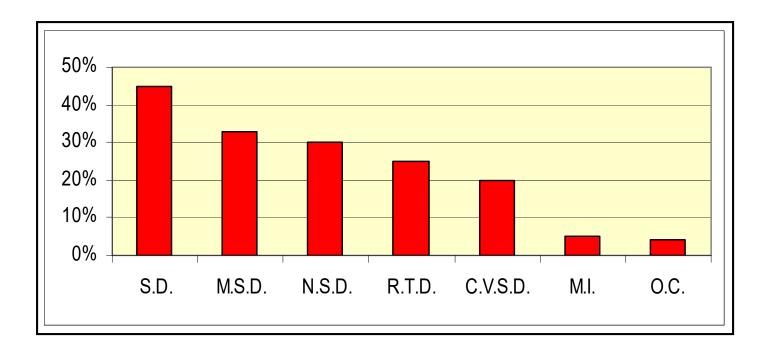
Rayon Industry

- **O.H.- Occupational Health**
- **O.E.- Occupational Environment**
 - O.D/H- Occupational Disease/Hazards

OCCUPATIONAL HEALTH

- O.H. Is the promotion & maintenance of the highest degree of physical,
- Mental & social well being of workers in all occupation.
- It is a division of general medicine and is devoted to the prevention of occ. Disease & injury and to the promotion of health of people at work.

OCCUPATIONAL ENVIRONMENT


• Occupational environment is the external conditions & influences prevailed at the place of work & which has a bearing (direct and/or indirect effect) on the health of working population.

OCCUPATIONAL DISEASE

• The disease which arises out of or in course of occupation is known as occupational disease

ETIOLOGICAL FRACTION OF O.D.

ASTHMA WITH LATENCY

Spraying Isocyanate Paint

Paint Aerosol Fills the Shop

INTERACTION IN OCCUPATIONAL ENVIRONMENT

1. WORKERS vs. PHYSICAL AGENTS

CHEMICAL AGENTS

BIOLOGICAL AGENTS

2. WORKERS vs. MACHINE

3. WORKERS vs. WORKERS

TYPE OF HAZARDS

PHYSICAL
CHEMICAL
BIOLOGICAL
MECHANICAL

•PSYCHOSOCIAL

Health hazard
The potential to cause
harm to healthImage: ChemicalImage: Chemical

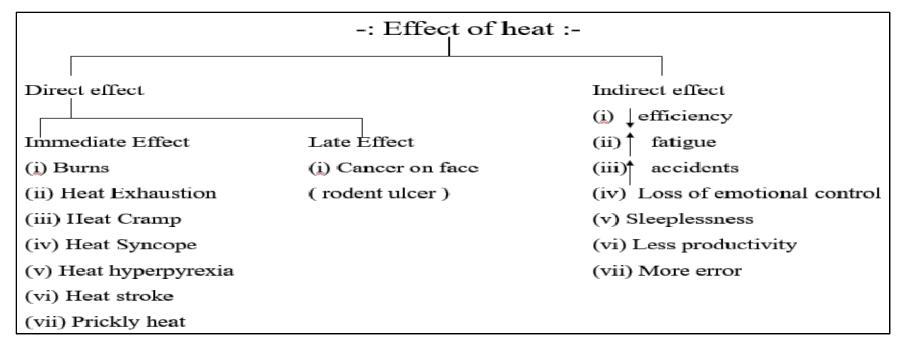
PHYSICAL AGENTS

- HEAT
- COLD
- NOISE
- VIBRATION
- IONIZING RADIATION
- NON IONIZING RADIATION
- ELECTRICITY

PHYSICAL AGENTS (contd.)

- LIGHT
- A. BRIGHTNESS
- B. DARKNESS
- BAROMETRIC PRESSURE
- A. HIGH
- *B. LOW*
- U.S.G.(Ultra Sonography)
- E.M.F.(Electro Magnetic Field)
- MOISTURE

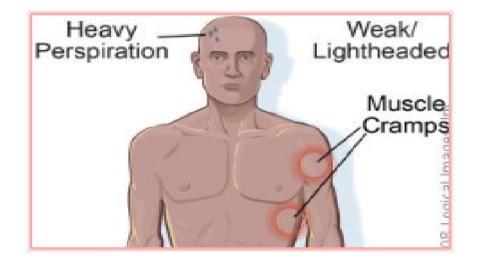
Heat Stress


It is the amount of heat that is to be eliminated from human body to remain the body in thermal equilibrium and measured as the metabolic heat load and heat loss or gain through the process of Convection, Conduction, Radiation, and evaporation.

M + (R + C + K) - E = + S

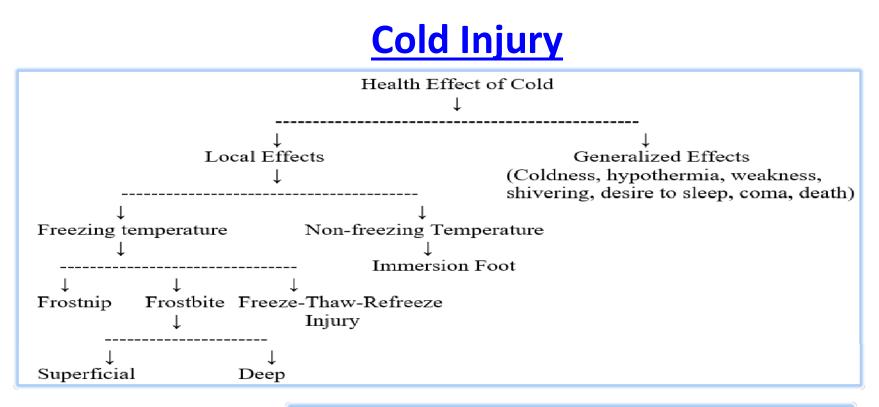
General relation between work rate, heart rate and oxygen consumption

Category	O2 consumption (L/min)	Heart rate (Beat/min)
Light	0.5-1.0	75-100
Moderate	1.0-1.5	100-125
Heavy	1.5-2.0	125-150
Very Heavy	2.0-2.5	150-175
Extremely heavy	2.5	175

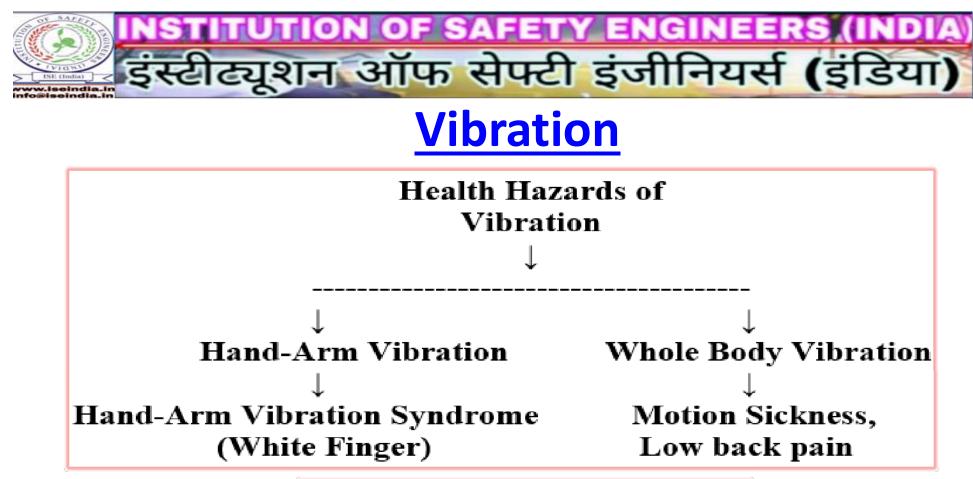


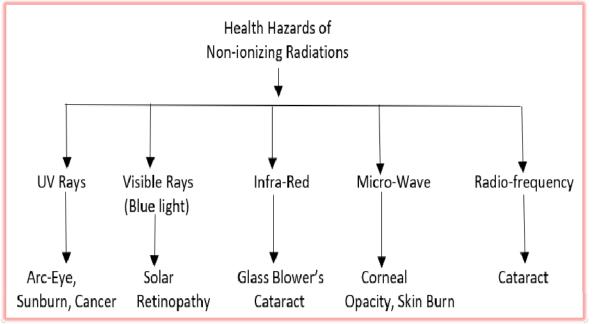


Molten Metal Industries

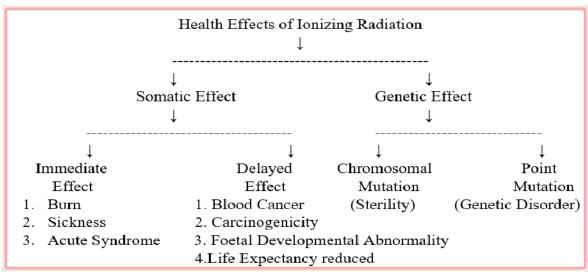


Erythema ab igni


<u>FIRE</u>



Frost Bite



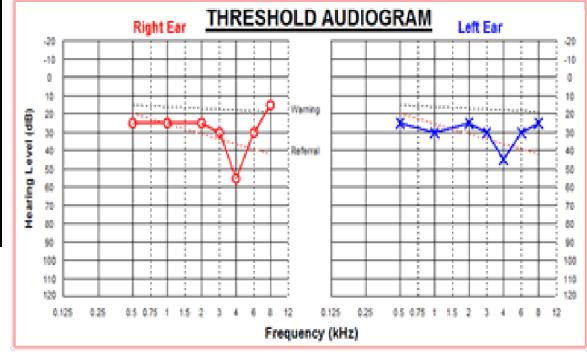
NON-IONIZING RADIATION

Ionizing Radiation

Ionizing Burn

NOISE

According to ANSI, any unwanted sound is known as noise


Permissible Level Of Noise

(Continuous Noise)

Duration /day in Hr	Sound Level(dBA)
8 Hrs.	90
6 Hrs	92
4 Hrs.	95
3 Hrs.	97
2 Hrs.	100
1 Hrs.	105
¹ / ₂ Hrs	110
1⁄4 Hrs.	115
1/3 Hrs.	-

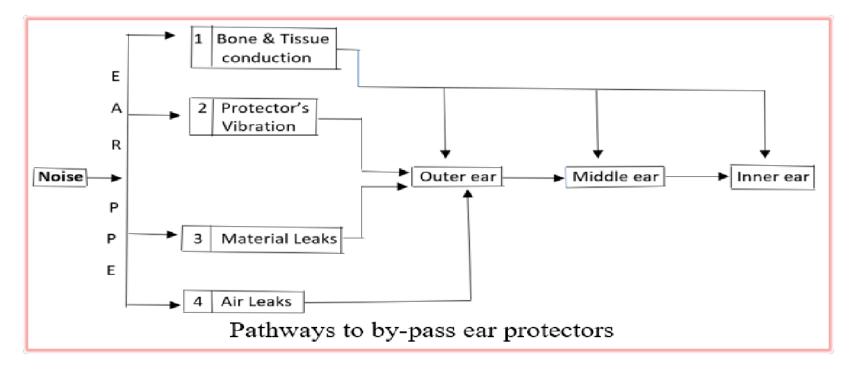
Permissible Level of Noise (Impulse Noise)

Noise in dBA	Impulse per day
140	100
135	315
130	1000
125	3160
120	10,000

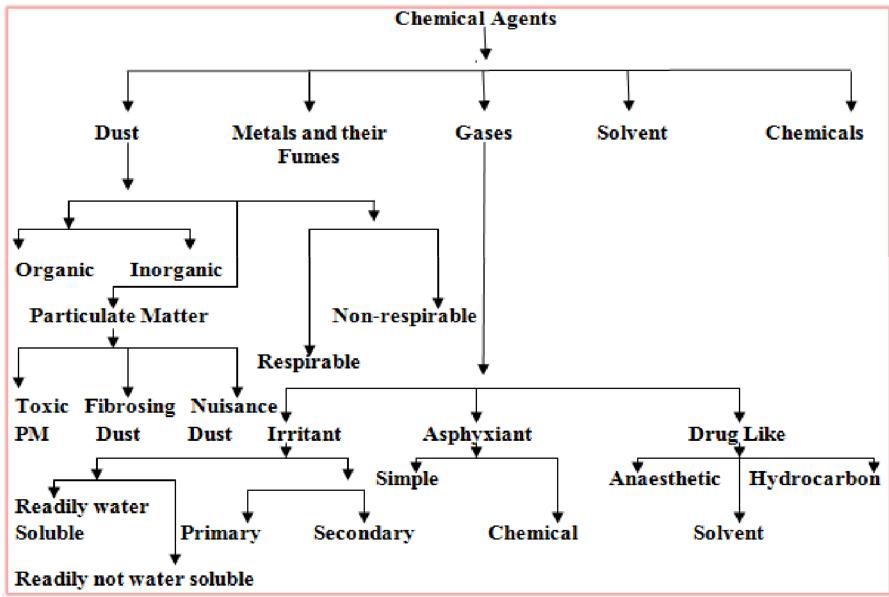
Characteristics of NIHL

- 1. Gradual
- 2. Painless
- 3. Bilateral
- 4. Preventable at initial stage
- 5. In early stage speech range is not affected
- 6. Hearing loss can be measured
- 7. It depends on individual susceptibility
- 8. It usually starts at 4000 Hz.
- 9. It gradually expands to upper & lower frequency range
- 10. It is not amenable to treatment
- 11. It is S.N type of deafness
- 12. Irreversible

Ear Muff



Net Reduction Rate (NRR)


The 50# safety factor adjusts labeled NRR values for workplace conditions and is used when considering whether engineering controls are to be implemented.

Estimated dBA exposure = 98 dBA - $[(25-7) \times 50#]$ = 89 dBA

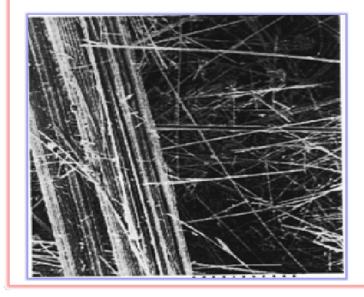
However, when assessing the adequacy of the hearing protection for hearing conservation (HC) purposes, CSHOs should only subtract 7dB from the NRR. Exposure for PPE/ HC enforcement = 98 dBA - (25-7) = 80 dBA

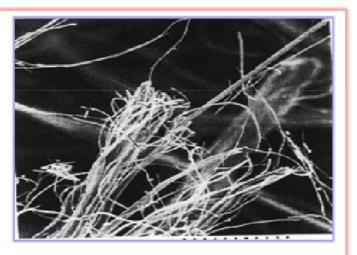
Dermatitis

Oil Acne

Occupational Lung Disease

Damage to the lungs caused by dusts or fumes or noxious substances inhaled by workers in certain specific occupations are known as Occupational Lung Disease

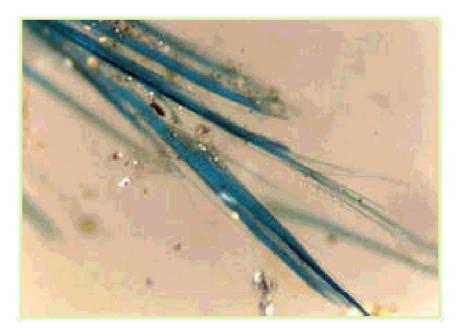

Pneumoconioses

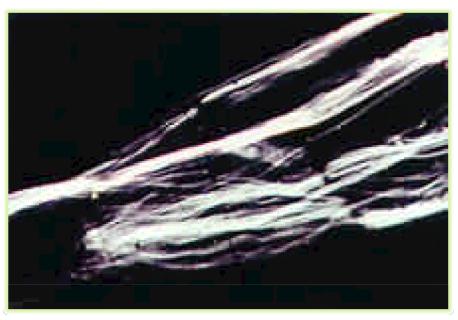

- Lung diseases caused by inhalation of fine dust particles and the reaction of the lungs to the dust
- Pneumoconiosis is defined as the nonneoplastic reaction of the lungs to inhaled mineral or organic dust in various occupations and the resultant alteration in their structure, excluding asthma, bronchitis and emphysema.

Asbestosis

Asbestosis: caused by bio-persistent, durable mineral fibers, most commonly chrysotile, amosite, or crocidolite asbestos

Chrysotile or *white* asbestos-- the serpentine group

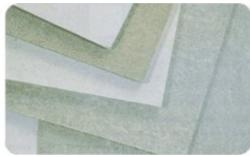




Amphibole group amosite or brown asbestos, crocidolite or blue asbestos

BLUE ASBESTOS

WHITE ASBESTOS


Asbestos Mines

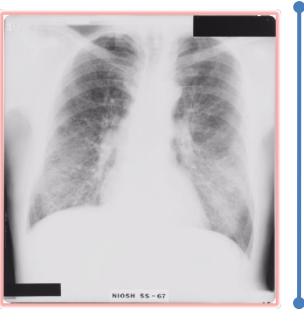
ASBESTOS

- roof tile(slate)
- brake pad
- Asbesto
- s cement
- textile
- packing
- 📕 tape
- blanket(fire-proof)

Ship Breaking Unit

Asbestos Waste

ASBESTOS RELATED DISORDERS


1). Asbestos bodies in the sputum

2). Transient Pleural Effusions

3). Pleural Plaques and Pleural Thickening

ASBESTOSIS	DOSE DEPENDENT	15 + yrs	PREVENTABLE
LUNG -CANCER	Dose dependant +SMOKING MULTIPLES	20 + yrs	"
MESOTHELIOMA	BLUE FIBRE	30 + yr s	"

Ferruginous Bodies



Not all ferruginous bodies are asbestos mineral at the core Coating around other minerals such as iron, talc, and glass

Asbestos Lung Cancer

Asbestosis

Mesothelioma

Silicosis is a fibrotic disease of the lung caused by the inhalation of, retention of and pulmonary reaction to crystalline silica.

SILICOSIS

Construction industry is one of India's largest employers

Growing at a rate of 15 percent a year

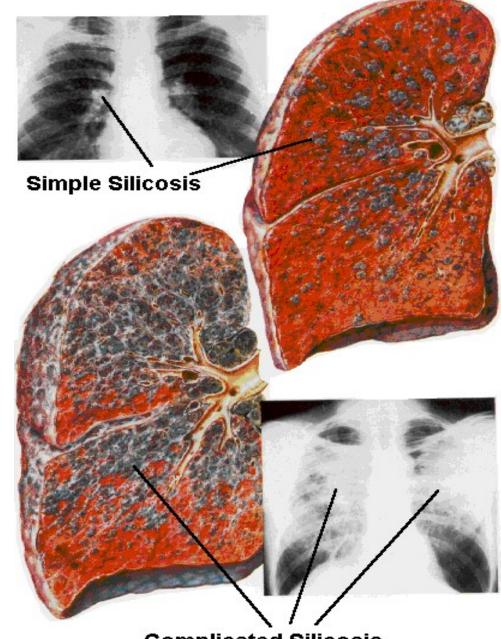
It employs 30 million workers, of which over 30% are women

Conservative estimates of women workers would put the number of children at sites in millions

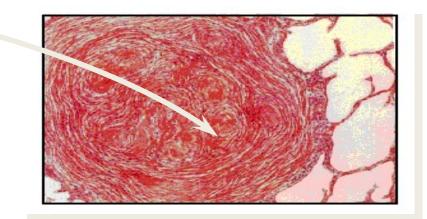
Stacks of raw material

Removing sheets with chisel

PROCESS IN SLATE PENCIL INDUSTRY


Removing sheets with chise

What Does Silicosis Look Like?


- Simple Silicosis
 - Small discrete nodules (lesions)
- Complicated Silicosis
 - Lesions increase in size
 - Grow together to form larger masses

Complicated Silicosis

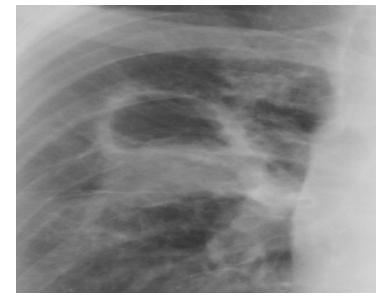
Typical Silicosis Nodule

- Fibrotic Scar Tissue Unable to pass oxygen or carbon dioxide
- Concentric ("onionskin") whorled pattern

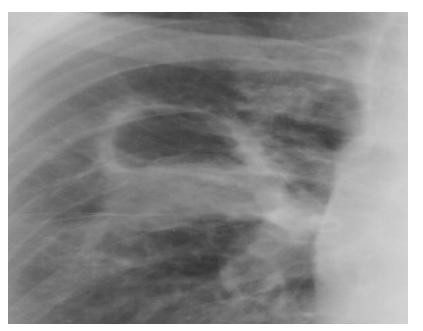
<u>PMF</u>

FALLOWING INDUSTRIAL WORKERS ARE AT RISK THEIR & PREVALENCE (INDIA)

Industry	Prevalence%	Reference
Gold Mines	13.9	Gowda(1983)
Mica Mines/Processing	5.2	Ganguli et al(1993)
Slate Pencil	54.6	Sayed et al(1984)
Ceramics & Potteries	15.1	Sayed et al(1995)
Quartz Crushing	12.0	NIOH(1982)
	33.5	NIOH(2000)
Stone Cutters	20	Saini et al(1984)
	25	Sethi & Kapoor(1982)
	35.2	Gupta et al(1972)
Fe Foundries	27.2	Samal et al(1986)
Agate Workers	38	Sadhu et al(1985)
Glass Bangle Workers	7.3	Srivastav et al(1988)
Sand Grinding	27.8	NIOH(1989)

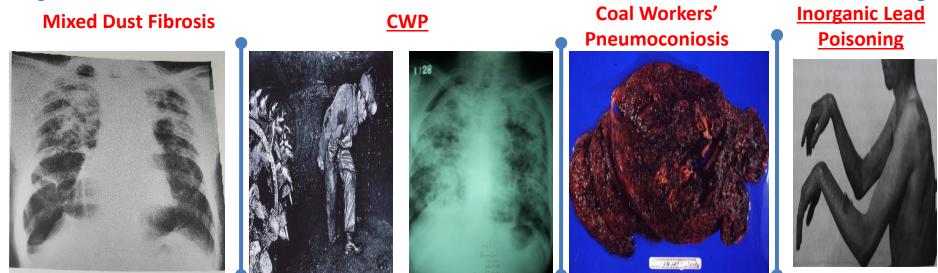

Silicosis vs Tuberculosis

<u>Sl. No.</u>	<u>Silicosis</u>	<u>Pulmonary TB</u>	
1.	Primary Complex absent	Primary Complex present	
2.	Symmetrical opacities in both lung fields	Asymmetrical opacities in both lung fields	
3.	Soft patchy/moist shadow absent	Soft patchy/moist shadow present	
4.	Egg-shell hillers lymph node present	Egg-shell lymph node absent	
5.	Pleural Effusion absent	Pleural Effusion present	
6.	Fibrosis of lung parenchyma is more	Lung parenchymal fibrosis is less	
7.	Possibility of cavitation is less except PMF	Possibility of cavitation is more with sometime feature of mycetoma	
<u>Silicosis</u>		<u>Tuberculosis</u>	
~	AL AL		

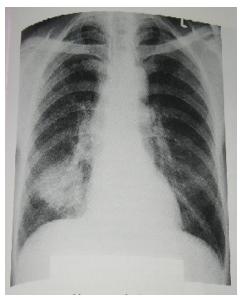


Tuberculous cavity

Fungal Ball (Mycetoma) in Cavity



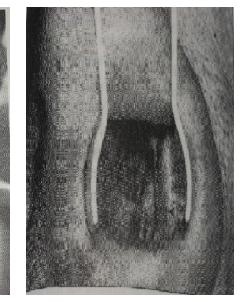
Cavitation


Stone Breaking Industry

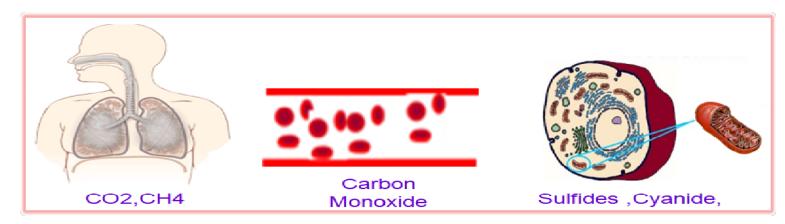
Total number of	Total number of	Prevalence
workers covered	silicosis cases detected	Rate
83	12	14.45%

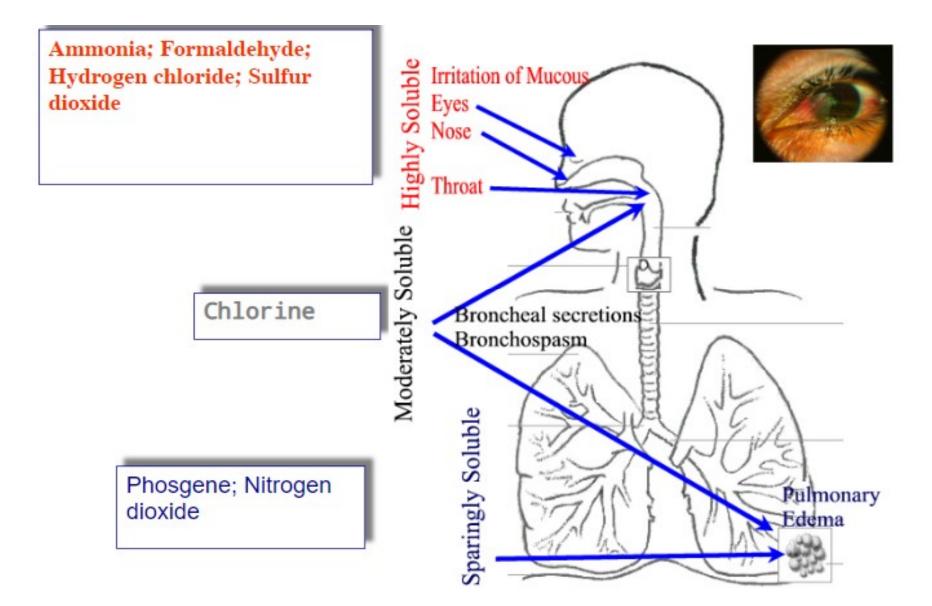
300	-	20
		80
400	-	50
150	-	80
350	-	50
250	-	50
500	-	50
300	-	50
150	-	60
200	-	60
300	-	50
	150 350 250 500 300 150 200	150-350-250-500-300-150-200-

Lipoid Pneumonia (Paraffinoma)



<u>Chrome</u>

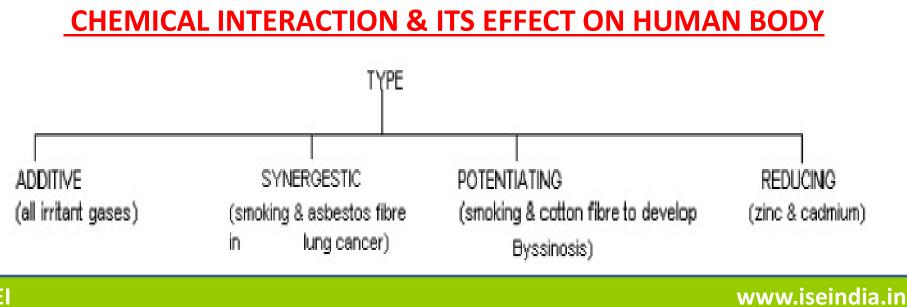

Nasal Septal Perforation


Nickel Itch/RashSimple AsphysiantsImage: Display of the systemImage: Display of the s

Chemical Asphyxiant

Carbon monoxide : It is one of the most insidious of the poisonous gases encountered in the oil industry. It is known as silent killer because it is colorless, odorless, tasteless, and non-irritant. It is produced in the burning of carbon containing material whenever the supply of air is not sufficient for complete combustion.

Toxico-Dynamics of Irritant Gases

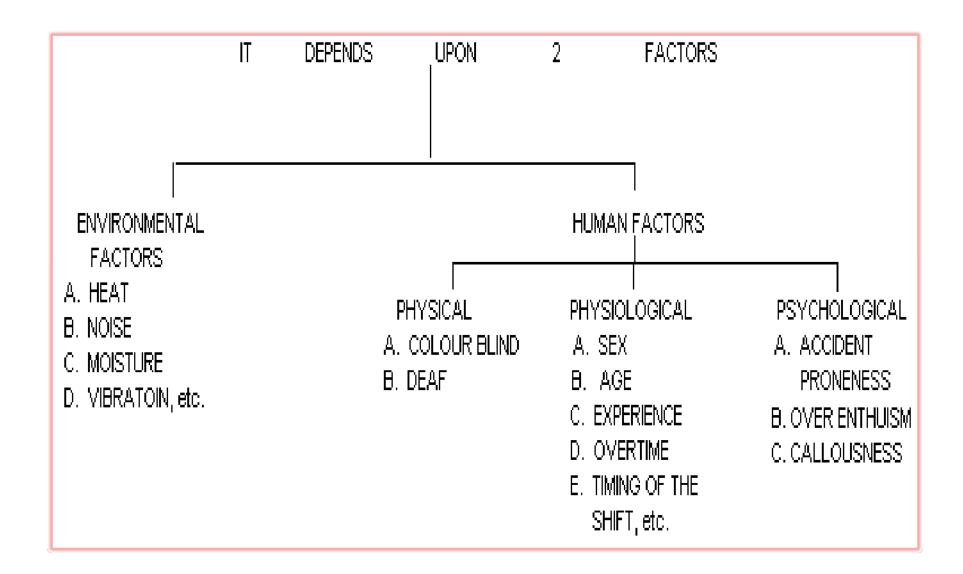

CLINICAL MANIFESTATIONS OF IRRITANT GASES DUE TO LOCAL EFFECTS

•Local corrosive effects of highly soluble irritants: Inflammation of eyes, nose and throat, hoarseness or loss of voice (due to swelling of voice box).

•Difficulty in breathing, cough and excess sputum, chest tightness (Broncheal secretion/spasm).

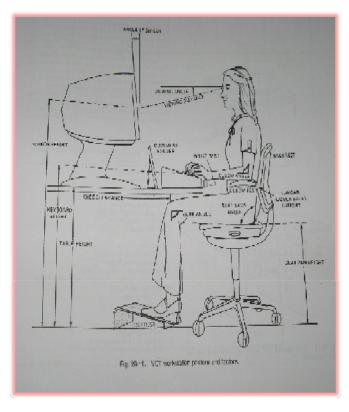
•Damage of type I pneumocyte \rightarrow Leaking of fluid in alveolar space \rightarrow Oedema lung

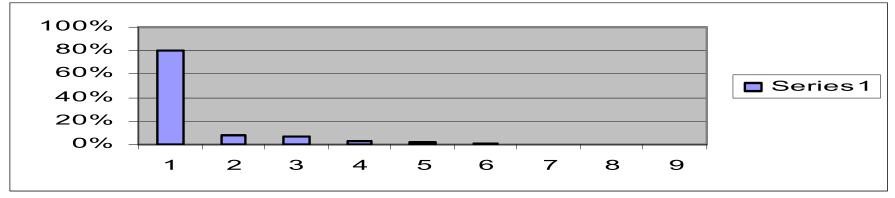
•Damage of type II pneumocyte $\rightarrow \downarrow$ Surfactant \rightarrow Collapse of alveoli \rightarrow Atelectasis


C. BIOLOGICAL AGENTS

•BACTERIA •VIRUS •FUNGUS •PROTOZOA •ANIMALS e.g. rat bite, cat bite, snake bite, dog bite

Cutaneous Anthrax

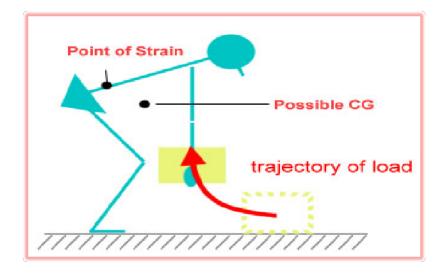

D. MECHANICAL HAZARD - causes accidents & injuries



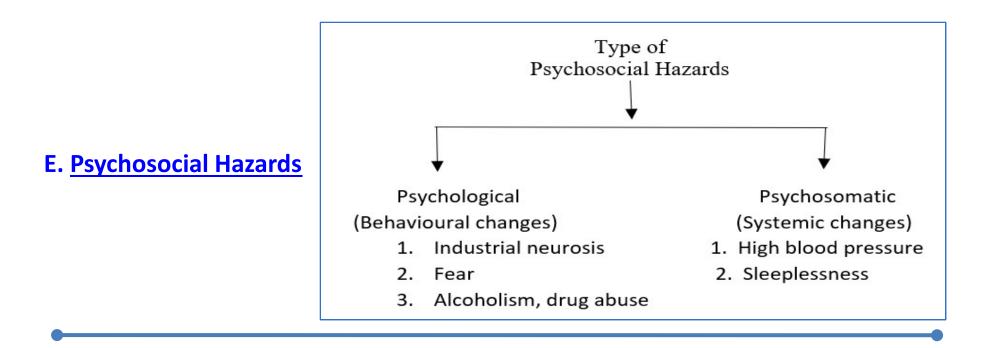
EYE INJURIES

The eye injuries account for about 5% of all ind. Injuries. They are caused due to :

•FLYING OBJECTS	:	80%
•TOOLS OR PARTS OF MACHINES	:	8%
•SPLASHES OF LIQUIDS	:	7%
• EXPLOSIVE	:	2.5%
•FALLS	:	2%
•INFECTIONS	:	0.5%



STD/CTD


Any situations where the works have not been designed ergonomically, the workers may suffer from Sustained Trauma Disorders like eye pain, eye fatigue, wrist pain, low back pain etc.

Work-Related Musculoskeletal Disorders

Bent forward No toe space No toe space Toe space

Musculoskeletal disorders are the problem and ergonomics is a solution.

PREVENTIVE HEALTH	means the formulation and implementation of long term policies and measures to mitigate the impact on Health
Levels of Prevention	 Primordial Prevention Primary Prevention Secondary Prevention Tertiary prevention
Primordial Prevention	Prevention of the risk Factor: exam. Relative Risk for Lung Cancer of Smoker = 10 Relative Risk for Lung Cancer of asbestos Worker = 5 Relative risk for both in one person for Lung Cancer = 60

Health Promotion & Specific Protection:

Primary Prevention	health promotion is the process of enabling people to increase their control over their own health and to improve it. Health promotion can be seen as a continuum ranging from prevention, including protection against specific risks, to the promotion of
	optimal health. In a broader sense it also includes the encouragement of all aspects of positive health.
<u>Secondary</u>	•Early Diagnosis, and
Prevention	•Treatment
<u>Tertiary</u>	•Disability Limitation, and
Prevention	 Rehabilitation

Medical Measure

1.

2. Safety Measure

3. Statutory/Legislative Measure

Δ_ Administrative Measure

>MEDICAL EXAMINATIONS

- 1. Pre-employment
- 2. Periodical
- 3. Pre-placement
- 4. Pre-retirement
- **5.** Special

NOTIFICATION

>MEDICAL & HEALTH CARE SERVICE

MEDICAL MEASURE (contd.)

- **1. FIRST AID BOXES**
- 2. FIRST AID CENTRE
- **3. HOSPITAL**
- **4. OCCUPATIONAL HEALTH SERVICE**

>ENVIRONMENTAL MONITORING

MEDICAL MEASURES

Preventive Measures

Pre-employment Medical Examination

The main purpose of Pre-employment Medical Examination is to place the right person in the right job.

HAZARDS	UNDESIRABLE CONDITION
a) Lead	Anaemia, hypertension, nephritis,
	peptic ulcer.
b) Dyes	Skin, bladder & kidney diseases, asthma, pre-cancerous lesion.

Periodical Medical Examination

The main purpose of PME is to detect the occupational diseases in the early stage.

Audiometric Test

Medical Record Keeping

First Aid Appliances and OHC

ESPONER व्यावसायिक स्वास्थ्य केंद्र और दवाखाना OCCUPATIONAL HEALTH CENTRE & DISPENSARY

First-Aid Treatment

FIRST RESPONDER CRITICAL CARE AMBULANCE

Occupational Health Service

OHS ARE HUMAN-SERVICE ORGANIZATIONS IN MODERN SOCIETY WHICH HAVE BEEN DESIGNED TO MANAGE AND PROMOTE THE SAFETY, HEALTH, AND WELFARE OF CITIZENS AT WORKS.

Principles:

- a) preventive
- b) promotive
- c) protective
- d) adaptation
- e) cure & rehabilitation
- f) primary health care

PROTECTION PRINCIPLE

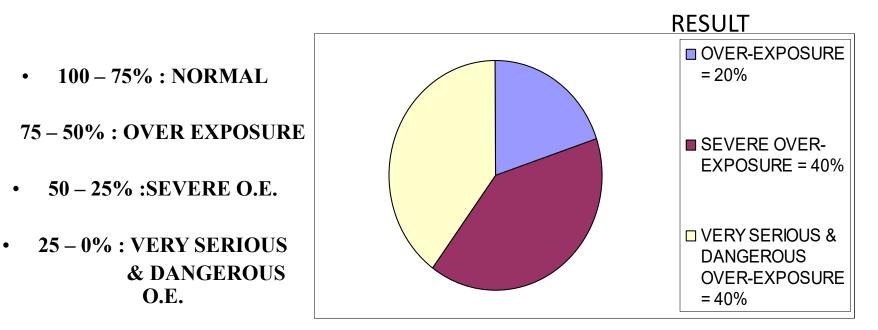
MEASURES FOR IMPROVING WORKERS' NUTRITION

Acclimatization as Adaptation

<u>Notice of certain</u> <u>Diseases-</u> The main purpose of notification in industry is to initiate measure for prevention and protection and ensuring their effective application and to investigate the working condition and other circumstances which have caused or suspected to have cause occupational diseases.

SUPERVISION OF WORKING ENVIRONMENT

Work Environment


Dust Monitoring

<u>Biological</u> Monitoring It is a standard preventive measure in the practice of industrial health and environmental safety

STUDY REPORT CHOLINESTERASE ACTIVITY IN BLOOD IN AN ORGANOPHOSPHATE PESTICIDE PLANT

Biological Monitoring & Environmental monitoring

In combination constitute a promising step towards an integrated exposure monitoring for health risk assessment

٠

ENGINEERING MEASURES

Mechanization

 DESIGN OF BUILDING GOOD HOUSEKEEPING GENERAL VENTILATION MECHANIZATION SUBSTITUTION DUST CONTROL ENCLOSURE ISOLATION LOCAL EXHAUST VENTILATION PROTECTIVE DEVICES •ENVIRONMENTAL MONITORING STATISTICAL MONITORING RESEARCH

<u>Mannual</u>

FIBRE HANDLING & PROCESSING INSIDE THE PLANT

Bag Cutting Inside/ Bag Opener Inside

ENCLOSURE: SANDBLASTING

FIBRE STORAGE AREA --- MAINTENANCE

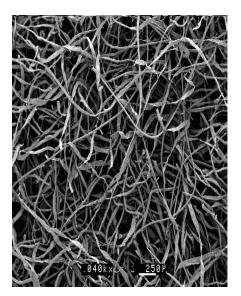
Vacuum Cleaning

WASTE RECYCLING **Broken sheet recycling**

Process sludge recycling

Wet Method

Local Exost Ventilation



Isolation from Noise Hazard

Substitution of Asbestos FibrePVA FibreCellulose Fibre

Personal Protective Equipment

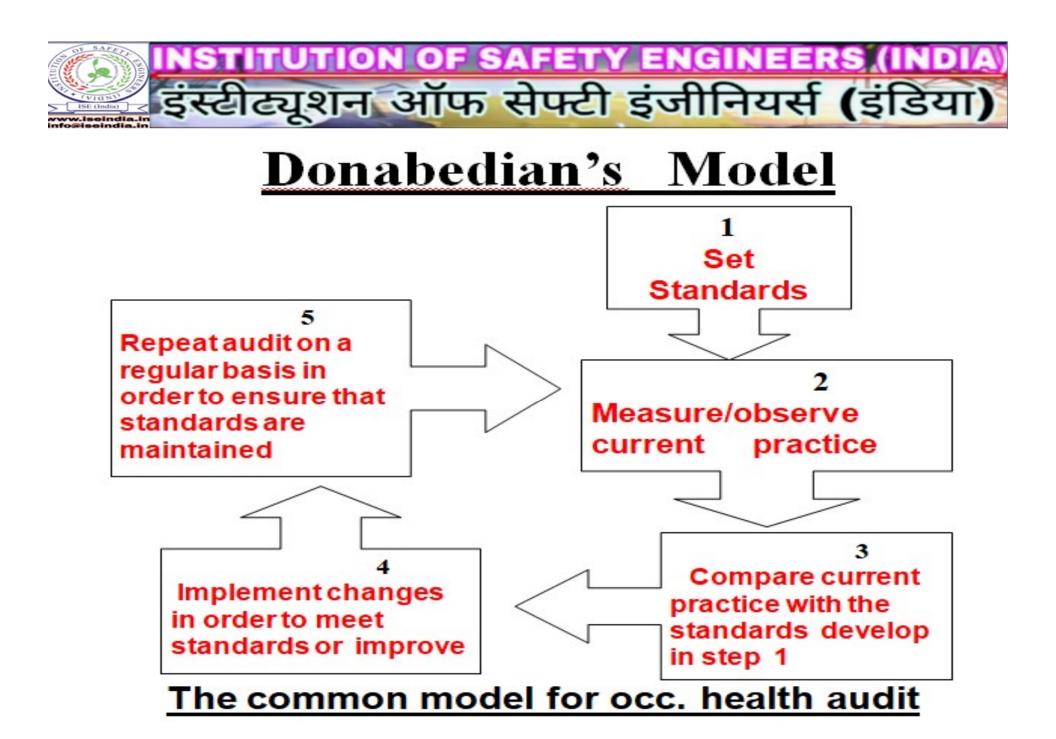
PPE use during asbestos removal

Preventive Health Care Training Program

- To upgrade knowledge & skill.
- To renew the attitudes of the people and to bring about a positive, safe & healthy work culture.
- To implement the concept of work place health promotion.

SOME OCCUPATIONAL HEALTH DEPARTMENTS HAVE ADOPTED THE ISO-9000 / BS-5750 APPROACH AND HAVE INCORPORATED ELEMENTS OF MEDICAL AUDIT INTO QUALITY SYSTEM.

BIS-14489 HAS INCORPORATED THE OCCUPATIONAL HEALTH AUDIT INTO OCCUPATIONAL SAFETY AUDIT AND RENAMED AS OCCUPATIONAL SAFETY & HEALTH AUDIT.


Objectives of Occupational Health Audit

➤To determine the effectiveness and efficiency of an OHS organization as a whole.

➤To determine the need of change e.g. in policy and in other planning and to evaluate any changes implemented.

➤To determine compliance with a standard, or with a service level agreement in terms of the structure of services, the quality of their process and/or the effectiveness of outcome.

➤To find gaps in the evidence base for current practice, for setting the agenda for further research, evaluation and hence wider improvements in quality.



Ergonomical Intervention

Ergonomics is now a well recognized discipline & constitutes an integral part of advanced Occupational Health Service. It simply means "fitting the job to the workers". The objective of ergonomics is "to achieve the best mutual adjustment of man and his work, for the improvement of human efficiency and wellbeing".

OCCUPATIONAL HEALTH HAZARDS & ITS PREVENTION IN PROCESS INDUSTRY

THANK YOU!

FOR MORE DETAILS VISIT - WWW.ISEINDIA.IN

OR MAIL - INFO@ISEINDIA.IN

CALL +91-6266474225, +91-8720831773

